_15. : Огаркина. Мемристоры

Автор Татьяна Огаркина, Суббота, апреля 02, 2016, 04:17:40

« предыдущая тема - следующая тема »
Вниз

Татьяна Огаркина

Суббота, апреля 02, 2016, 04:17:40 Последнее редактирование: Среда, апреля 13, 2016, 04:02:19 от ran
Мемристоры
Докладчик: Огаркина Т.М.,  гр. 442 об2 
Научн. рук.: Карпова Т.В.
[/size]


Мемристоры: пора ли переписывать учебники? (картинки во вложении)

ВВЕДЕНИЕ
Мемристор -  пассивный элемент в микроэлектронике, способный изменять своё сопротивление в зависимости от протекавшего через него заряда.
Hewlett-Packard (HP) объявила, что исследователи из HP Labs, центрального исследовательского отделения компании, доказали существование первоначально лишь теоретизируемого четвертого элемента электрической цепи. Этот научный прогресс может сделать возможным разработку компьютерных систем с памятью, которая не будет терять данные и нуждаться в загрузке, потребляя значительно меньше энергии и ассоциируя информацию аналогично человеческому мозгу. Группа из четверых исследователей HP Labs, возглавляемая Стенли Вильямсом (Stanley Williams), представила математическую модель и физический пример мемристора -- резистора с памятью (memory resistor) -- который имеет свойство сохранять историю информации, которую он получил. В апреле 2008 года Hewlett Packard доказала факт сущеcтвования мемристоров.


СОДЕРЖАНИЕ
Мемристор представляет собой двухстороннюю и двухслойную структуру. Слои из оксида титана зажаты между двумя металлическими электродами перемычкой. Один слой оксида титана покрыт кислородными вакансиями, что делает его полупроводником, соседний слой этого покрытия не имеет и играет роль изолятора. По наличию сопротивления между электродами можно определить состояние памяти -- включенное или выключенное.
С одним слоем оксида титана, имеющим в обычных условиях свойства изолятора, память переключается в выключенное состояние. Прикладывая напряжение к перемычке, кислородные вакансии переходят в слой оксида титана без специального покрытия, и устройство переключается во включенное состояние. Аналогично, изменив направление тока, кислородные вакансии возвращаются обратно, и устройство "выключается". Большое преимущество мемристора в том, что изменения сопротивления энергонезависимы и сохраняются до тех пор, пока не будет подано обратное напряжение. На данный момент, время переключения оставляет около 50 нс. Наблюдающееся в мемристоре явление гистерезиса позволяет использовать его в качестве ячейки памяти. Ожидается, что плотность хранения данных в накопителях на основе мемристоров будет настолько высокой, что смартфоны смогут вмещать до 100 Тбайт информации.
Hewlett-Packard предлагает отказаться от процессоров общего назначения в пользу кластеров специализированных вычислительных ядер, интегрированных с памятью и сетевыми компонентами. Такой подход позволит решать различные задачи быстрее при меньших затратах энергии.
К 1971 году, конечно же, Чуа еще не успел стать научным авторитетом, но зато сумел весьма оригинально перенести в сугубо прикладную теорию электросхем идею о красоте математических симметрий, в ту пору уже доминировавшую в фундаментальной теории физики частиц. Подобно тому, как другим на основе выявленных симметрий микромира удавалось предсказывать, а затем и отыскивать в экспериментах новые частицы материи, Леон Чуа выявил четкую математическую симметрию в основе всех электросхем. И на этой основе предсказал существование нового, в ту пору неизвестного базового элемента. Который он назвал «мемристор», то есть резистор с памятью, и в целом описал его предполагаемые свойства.
Согласно логике Чуа, четыре базовых величины, характеризующие состояния электросхемы (заряд, ток, напряжение, магнитный поток), могут быть соотнесены друг с другом шестью возможными способами. Для двух из этих шести соотношений имеются базовые физические законы, а еще для трех существуют общеизвестные элементы электросхем: резистор, конденсатор, индуктивность. При этом одна позиция -- соотносящая заряд и магнитный поток -- оставалась в красивой симметричной картине ничем не занятой. Поэтому Чуа, исходя из соображений математической эстетики, предложил на вакантное место свой «мемристор».
Согласно предсказанию, радикальное отличие нового элемента от других фундаментальных кирпичиков электросхемы заключалось в том, что только гипотетический мемристор несет в себе память о своем прошлом. На практике это означало бы, что элемент действует как резистор, у которого значение сопротивления изменяется в соответствии с током, через него проходящим, причем это значение запоминается даже после того, как ток в цепи исчезает...
Поскольку оригинальная идея Чуа в 1970-е годы не нашла никакого практического применения, ее восприняли и тут же сбросили со счетов как красивую математическую фантазию, не более того. Но через тридцать лет экспериментаторы в HP Labs таки поняли, что столкнулись в своих опытах с мемристивным поведением наноэлементов.
А поняв, далее уже осмысленно начали на основе феномена создавать новаторское запоминающее устройство -- как специфическую разновидность резистивной памяти RAM. Точнее, такой замечательной памяти, которая работает быстрее, чем обычная оперативная, но при этом при выключении питания запоминает свое состояние -- как память внешняя. То есть компьютер с мемристорной памятью может не только потреблять в десятки раз меньше электроэнергии, но при этом еще и обходиться без перезагрузок -- при выключениях/включениях всегда запоминая и возвращая свое последнее рабочее состояние...
По вполне понятным причинам среди тех известных людей мира инфотехнологий, кто был особо впечатлен не только собственно фактом открытия мемристора, но и быстрым прогрессом в его освоении, оказался и сам предсказатель четвертого элемента, профессор Леон Чуа. В комментариях для прессы он назвал новаторскую работу HP Labs «сдвигом парадигмы» и не без удовлетворения констатировал: «Что ж, теперь придется вносить изменения во все учебники электротехники».
Еще в 2008 году, на волне первых публикаций об открытии мемристора, один из участников команды HP Labs, наш соотечественник Дмитрий Струков в одном из интервью сразу отметил, что их устройство в своей работе довольно отчетливо напоминает функционирование синапсов -- то есть точек контакта между нервными клетками у живых организмов вообще и в мозге в частности.
Хотя тайны работы мозга пока что никак нельзя называть постигнутыми, специалисты предполагают, что работа нашей памяти определяется именно тем, какие нейроны мозга связаны друг с другом и насколько эти связи сильны. Соответственно, процесс запоминания трактуется как изменение силы этих связей под действием ощущений, порождающих сигналы в нейронной сети мозга.
Увидев аналогию для данных процессов в работе своего устройства, в HP Labs предположили, что можно попытаться скопировать структуру мозга, построив нейроны из транзисторов, а синапсы заменив мемристорами.
Для всех, кто следит за развитием науки и технологий, давно уже не секрет, сколь важную роль в этом деле с некоторых пор стали играть так называемые связи с общественностью или, выражаясь более цинично, уловки пиара. Фактически любая научно-техническая инициатива требует сегодня значительных финансовых вложений, а потому для привлечения денег к проекту применяются самые разные трюки, вплоть до совершенно бесстыжей рекламной шумихи.
Конкретно в истории с мемристорами местом открытия оказалась корпорация-гигант Hewlett Packard, а потому неудивительно, что маховик рекламы «нового прорыва» раскрутился очень быстро и с впечатляющей мощью. За всем этим шумом, ясное дело, стало почти не слышно критических голосов от скептиков и сомневающихся. А такие люди, как известно, имеются всегда и повсюду, особенно в научной среде с ее изобилием грамотных профессионалов.
И вот что за вещи эти специалисты-оппоненты (ничуть не умаляя реальных успехов новаторов) говорят относительно идейной базы -- «четвертого элемента, сделавшего теорию электросхем окончательно полной».

Прежде всего, следует отметить существенные различия между тем мемристором, который был теоретически предсказан Леоном Чуа в 1971 году и тем устройством, которое в 2008 году представили публике исследователи HP Labs. Гипотетический мемристор в теории не имеет никакой материальной памяти, а работа его основана на магнитном потоке. Однако наноконструкция, обнаруженная в HP, фактически представляет собой аналоговое запоминающее устройство, которое вообще не требует для своей работы эффектов магнетизма.
Другой существенный момент в том, что Леон Чуа, как человек, первым предложивший концепцию мемристора, предпочел не отвергать открытие HP Labs по причине очевидного несоответствия теории, а вместо этого изменил свою собственную позицию -- относительно того, что представляет собой мемристор.
Как результат -- теперь мемристорами именуют все, что проявляет в работе мемристивные свойства. Однако такого рода устройства и материалы были известны и описаны многими исследователями задолго до открытия HP Labs. Но только никто не называл их мемристорами -- по причине несоответствия теоретической модели Чуа.
Итак, на сегодняшний день уже вполне ясно вот что. Опубликованное в 2008 году открытие ученых HP Labs не только помогло красиво объединить несколько разных областей -- системы резистивной RAM, мемристоры и физику гранулированных сред, -- но и дало начало существенно новой дисциплине в информатике, получившей название «мемкомпьютинг»
Суть этого нового подхода, в двух словах, сводится к тому, что открытые ныне компоненты схем с памятью, или «мем-элементы» (мемристоры, мем-емкости и мем-индукторы), способны сами выполнять одновременно как обработку, так и хранение информации. В условиях такой платформы, объединяющей в своих элементах процессоры и все виды памяти, полный цикл работы с начальными, промежуточными и финальными данными происходит быстро и параллельно в одном и том же месте.
Разработчики мемкомпьютерного направления особо отмечают, что состояния мемэлементов подстраиваются под входные сигналы и обеспечивают аналоговые возможности, недоступные в стандартных элементах электроники. А это приводит к адаптивной схемотехнике, обеспечивая эффективную аналогию для массивно-параллельных вычислений.
Переформулируя то же самое чуть иначе, можно сказать, что все эти особенности новой технологии поразительно похожи на то, как функционируют живые биологические организмы. А значит, у ученых появляются новые возможности для постижения поразительной эффективности природы и создания компьютерных систем, вдохновленных биологией.
Причем обязательно надо отметить и вот еще какой важный факт. Все эти новые элементы электронной схемотехники, как выяснилось, возникают в системах естественным образом -- когда технология углубляется до уровня наномасштабов и начинает работать с молекулярной, или иначе, гранулированной структурой материалов. Другими словами, мемэлементы оказываются естественным побочным продуктом непрерывной миниатюризации электронных устройств...
Конечно же, тема быстро прогрессирующего ныне мемкомпьютинга однозначно заслуживает отдельного рассказа. Ну а здесь, в заключение, осталось лишь еще раз вспомнить слова Леона Чуа, вынесенные в заголовок, -- про «пора переписывать учебники». И обратить внимание на забавную вещь.

ЗАКЛЮЧЕНИЕ
Наука, спору нет, за последние 6-7 лет узнала массу нового и важного как про мемристоры, так и про устройство компьютерных схем, работающих на уровне молекулярной структуры материалов. Но вот пришло ли уже время переписывать учебники -- это большой вопрос.
Потому что «настоящий» мемристор пока что в природе так и не найден, а тайна работы сознания в мозге все еще наукой не постигнута. И не исключено, что между этими ускользающими вещами имеется самая непосредственная связь.
Добавим, компания Crossbar демонстрировала вполне работоспособные прототипы RRAM в 2013 и в 2014 годах. В данном случае она приступила к следующему этапу своего плана -- к лицензированию технологии производства. Согласно испытаниям, массив памяти RRAM Crossbar в 20 раз быстрее NAND, в 20 раз экономичнее её по питанию и выдерживает в 10 раз больше циклов перезаписи. Единственное в чём RRAM может уступать NAND -- это плотность записи. Опытные микросхемы RRAM Crossbar были ёмкостью до 4 Мбит. Ясность в этом вопросе может появиться после первого производственного анонса SMIC с использованием нового типа памяти. Ждём.


Вверх