Настройка ПИД-регуляторов

Автор Степанов Иван, Воскресенье, марта 24, 2024, 06:55:36

« предыдущая тема - следующая тема »
Вниз

Степанов Иван

Воскресенье, марта 24, 2024, 06:55:36 Последнее редактирование: Пятница, марта 29, 2024, 18:07:05 от Степанов Иван
Исполнитель: Степанов Иван Игоревич. Группа: 241-об
Научный руководитель: Русинов Владислав Леонидович, СКБ «Промышленная робототехника и автоматизация»

План:
1. Принцип действия ПИД-регулятора
2. Примеры использования ПИД-регуляторов.
3. Методы настройки ПИД-регуляторов
4. Настройка ПИД-регулятора с помощью MATLAB

1.Пропорционально-интегрально-дифференцирующий регулятор (ПИД) регулятор -- устройство в управляющем контуре с обратной связью. Используется в системах пвтоматического управления для формирования управляющего сигнала с целью получения необходимых точности и качества переходного процесса. ПИД-регулятор формирует управляющий сигнал, являющийся суммой трёх слагаемых, первое из которых пропорционально разности входного сигнала и сигнала обратной связи (сигнал рассогласования), второе -- интегралу  сигнала рассогласования, третье -- производной сигнала рассогласования.

2.Пропорциональная составляющая
     Пропорциональная составляющая вырабатывает выходной сигнал, противодействующий отклонению регулируемой величины от заданного значения, наблюдаемого в данный момент времени. Он тем больше, чем больше это отклонение. Если входной сигнал равен заданному значению, то выходной равен нулю.
Однако при использовании только пропорционального регулятора значение регулируемой величины никогда не стабилизируется на заданном значении. Существует так называемая статическая ошибка, которая равна такому отклонению регулируемой величины, которое обеспечивает выходной сигнал, стабилизирующий выходную величину именно на этом значении. Например, в регуляторе температуры выходной сигнал (мощность нагревателя) постепенно уменьшается при приближении температуры к заданной, и система стабилизируется при мощности, равной тепловым потерям. Температура не может достичь заданного значения, так как в этом случае мощность нагревателя станет равна нулю, и он начнёт остывать.
Чем больше коэффициент пропорциональности между входным и выходным сигналом (коэффициент усиления), тем меньше статическая ошибка, однако при слишком большом коэффициенте усиления при наличии задержек (запаздывания) в системе могут начаться автоколебания, а при дальнейшем увеличении коэффициента система может потерять устойчивость.

3.Интегрирующая составляющая
     Интегрирующая составляющая пропорциональна интегралу по времени от отклонения регулируемой величины. Её используют для устранения статической ошибки. Она позволяет регулятору со временем учесть статическую ошибку.
Если система не испытывает внешних возмущений, то через некоторое время регулируемая величина стабилизируется на заданном значении, сигнал пропорциональной составляющей будет равен нулю, а выходной сигнал будет полностью обеспечиваться интегрирующей составляющей. Тем не менее, интегрирующая составляющая также может приводить к автоколебаниям при неправильном выборе её коэффициента.

4.Дифференцирующая составляющая
     Дифференцирующая составляющая пропорциональна темпу изменения отклонения регулируемой величины и предназначена для противодействия отклонениям от целевого значения, которые прогнозируются в будущем. Отклонения могут быть вызваны внешними возмущениями или запаздыванием воздействия регулятора на систему.

5.Назначение ПИД-регулятора -- в поддержании заданного значения r некоторой величины y с помощью изменения другой величины u. Значение r называется заданным значением (или уставкой, в технике), а разность e = (r − y) -- невязкой (или ошибкой [регулирования], в технике), рассогласованием или отклонением величины от заданной. Приведённые ниже формулы справедливы в случае линейности и стационарности системы, что редко выполняется на практике.

6.Недостатки использования ПИД-регуляторов
     При использовании ПИД-регулятора в системе регулирования, следует учитывать нежелательные эффекты, возникающие при реализации канала производной сигнала ошибки έ(t). Недостатки проявляются из-за того, что при усилении этого канала прямо пропорционально возрастает частота. Основными недостатками при этом являются:
Повышенное усиление высокочастотных составляющих сигнала ошибки. Они носят шумовой характер и из-за этого отношение полезной составляющей управляющего сигнала к шумовой уменьшается, что дестабилизирует объект управления.
Возникновение импульсов большой амплитуды. Такое явление возникает в моменты скачкообразного изменения ошибки, несмотря на медленное изменение сигнала системы и в связи со скачкообразными изменениями сигнала установки и его проникновением на вход дифференциатора

Вверх