_21. Николаева. Коэффициент мощности и способы его повышения

Автор Николаева Мария, Суббота, апреля 02, 2016, 06:38:59

« предыдущая тема - следующая тема »
Вниз

Николаева Мария

Суббота, апреля 02, 2016, 06:38:59 Последнее редактирование: Среда, апреля 13, 2016, 23:05:21 от Николаева Мария
Коэффициент мощности и способы его повышения
Докладчик: Николаева М.Н.,  гр. 442 об3  
Научн. рук.: Карпова Т.В.



Коэффициент мощности -- безразмерная физическая величина, являющаяся энергетической характеристикой электрического тока. Коэффициент мощности характеризует приёмник электроэнергии переменного тока, а именно -- степень линейности нагрузки. Равен отношению потребляемой электроприёмником активной мощности к полной мощности. Активная мощность расходуется на совершение работы. Полная мощность -- геометрическая сумма активной и реактивной мощностей (в случае синусоидальных тока и напряжения). В общем случае полную мощность можно определить как произведение действующих (среднеквадратических) значений тока и напряжения в цепи. Полная мощность равна корню квадратному из суммы квадратов активной и неактивной мощностей. В качестве единицы измерения полной мощности принято использовать вольт-ампер (В∙А) вместо ватта (Вт).
Согласно неравенству Коши--Буняковского, активная мощность, равная среднему значению произведения тока и напряжения, всегда не превышает произведение соответствующих среднеквадратических значений. Поэтому коэффициент мощности принимает значения от нуля до единицы (или, что то же, от 0 до 100 %).
Коэффициент мощности математически можно интерпретировать как косинус угла между векторами тока и напряжения. Поэтому в случае синусоидальных напряжения и тока величина коэффициента мощности совпадает с косинусом угла, на который отстают соответствующие фазы.
В электроэнергетике для коэффициента мощности приняты обозначения cos φ (где φ -- сдвиг фаз между силой тока и напряжением) либо λ. Когда для обозначения коэффициента мощности используется λ, его величину обычно выражают в процентах.
При наличии реактивной составляющей в нагрузке кроме значения коэффициента мощности иногда также указывают характер нагрузки: активно-ёмкостный или активно-индуктивный. В этом случае коэффициент мощности соответственно называют опережающим или отстающим.
В случае синусоидального напряжения, если нагрузка не имеет реактивной составляющей, коэффициент мощности равен доле мощности первой гармоники тока в полной мощности, потребляемой нагрузкой, и равен коэффициенту искажений тока.

ПОВЫШЕНИЕ КОЭФФИЦИЕНТА МОЩНОСТИ В ЦЕПЯХ СИНУСОИДАЛЬНОГО ТОКА


Повышение коэффициента мощности в цепях синусоидального тока. Большинство современных потребителей электрической энергии имеют индуктивный характер нагрузки, токи которой отстают по фазе от напряжения источника. Так для асинхронных двигателей, трансформаторов, сварочных аппаратов и других реактивный ток необходим для создания вращающегося магнитного поля у электрических машин и переменного магнитного потока трансформаторов.
Активная мощность таких потребителей при заданных значениях тока и напряжения зависит от cosφ:

P = UICosφ, I = P / UCosφ



СНИЖЕНИЕ КОЭФФИЦИЕНТА МОЩНОСТИ ПРИВОДИТ К УВЕЛИЧЕНИЮ ТОКА


Косинус фи особенно сильно снижается при работе двигателей и трансформаторов вхолостую или при большой недогрузке. Если в сети есть реактивный ток мощность генератора, трансформаторных подстанции и сетей используется не полностью. С уменьшением cosφ значительно возрастают потери энергии на нагрев проводов и катушек электрических аппаратов.
Повышение коэффициента мощности в цепях синусоидального тока. Например, если активная мощность остается постоянной, обеспечивается током 100 А при cosφ=1, то при понижении cosφ до 0,8 и той же мощности сила тока в сети возрастает в 1,25 раза (Iа = Iсети х cosφ, Iс = Iа / cosφ ).
Потери на нагрев проводов сети и обмоток генератора (трансформатора) Pнагр = I2сети х Rсети пропорциональны квадрату тока, то есть они возрастают в 1,252 = 1,56 раза.
При cosφ= 0,5 сила тока в сети при той же активной мощности равна 100 / 0,5 = 200 А, а потери в сети возрастают в 4 раза (!). Возрастают потери напряжения в сети, что нарушает нормальную работу других потребителей.
Счетчик потребителя во всех случаях отсчитывает одно и то же количество потребляемой активной энергии в единицу времени, но в последнем случае генератор подает в сеть силу тока, в 2 раза большую, чем в первом. Нагрузка же генератора (тепловой режим) определяется не активной мощностью потребителей, а полной мощностью в киловольт-амперах, то есть произведением напряжения на силу тока, протекающего по обмоткам.
Если обозначить сопротивление проводов линии Rл, то потери мощности в ней можно определить так:
Таким образом, чем выше потребителя, тем меньше потери мощности в линии и дешевле передача электроэнергии.
Коэффициент мощности показывает, как используется номинальная мощность источника. Так, для питания приемника 1000 кВт при φ= 0,5 мощность генератора должна быть S = P / cosφ = 1000 / 0,5 = 2000 кВА, а при cosφ = 1 S = 1000 кВА.
Следовательно, повышение коэффициента мощности увеличивает степень использования мощности генераторов.
Для повышения коэффициента мощности (cosφ) электрических установок применяют компенсацию реактивной мощности.

СПОСОБЫ ПОВЫШЕНИЯ КОЭФФИЦИЕНТА МОЩНОСТИ

Увеличения коэффициента мощности (уменьшения угла φ - сдвига фаз тока и напряжения) можно добиться следующими способами:
1) заменой мало загруженных двигателей двигателями меньшей мощности;
2) понижением напряжения;
3) выключением двигателей и трансформаторов, работающих на холостом ходу;
4) включением в сеть специальных компенсирующих устройств, являющихся генераторами опережающего (емкостного) тока.
На мощных районных подстанциях для этой цели специально устанавливают синхронные компенсаторы - синхронные перевозбужденные электродвигатели.

 
Синхронные компенсаторы
Чтобы повысить экономичность энергетических установок наиболее часто используют батареи конденсаторов, подключаемые параллельно индуктивной нагрузке (рис. 2 а).


Рис. 2 Включение конденсаторов для компенсации реактивной мощности: а - схема, б, в - векторные диаграммы
Для компенсации cosφ в электрических установках до нескольких сотен кВА применяют косинусные конденсаторы. Их выпускают на напряжение от 0,22 до 10 кВ.
Емкость конденсатора, необходимую для повышения cosφ от существующего значения cosφ1 до требуемого cosφ2, можно определить по диаграмме (рис. 2 б, в).
При построении векторной диаграммы в качестве исходного вектора принят вектор напряжения источника. Если нагрузка представляет собой индуктивный характер, то вектор тока I1 отстает от вектора напряжения на угол φ1Iа совпадает по направлению с напряжением, реактивная составляющая тока Iр отстает от него на 90° (рис. 2 б).
После подключения к потребителю батареи конденсаторов ток I определяется как геометрическая сумма векторов I1и Ic. При этом вектор емкостного тока опережает вектор напряжения на 90° (рис. 2, в). Из векторной диаграммы видно, что φ2 < φ1, т.е. после включения конденсатора коэффициент мощности повышается от cosφ1 до cosφ2

Емкость конденсатора можно рассчитать при помощи векторной диаграммы токов (рис. 2 в) Ic = Iр1 - Iр = Iа tgφ1 - Iаtgφ2 = ωCU
Учитывая, что P = UIа, запишем емкость конденсатора С = (Iа / ωU) х (tgφ1 - tgφ2) = (P / ωU2) х (tgφ1 - tgφ2).
На практике обычно коэффициент мощности повышают не до 1,0, а до 0,90 - 0,95, так как полная компенсация требует дополнительной установки конденсаторов, что часто экономически не оправдано.


ЗАКЛЮЧЕНИЕ


В конденсаторных установках с низким коэффициентом мощности можно добиться значительного снижения затрат на электроэнергию путём применения коррекции коэффициента мощности. Эта экономия достигается в первую очередь за счёт уменьшения сумм счетов, которые энергоснабжающие организации выставляют потребителям.
Увеличение коэффициента мощности может уменьшить стоимость электроэнергии, высвободить мощности системы распределения, увеличить уровень напряжения и уменьшить потери в системе. Хорошо зарекомендовавшим себя способом коррекции коэффициента мощности является использование шунтирующих конденсаторных батарей. Однако с применением конденсаторов связаны определённые проблемы.



БИБЛИОГРАФИЧЕСКИЙ СПИСОК


  1. «Основы электроснабжения промышленных предприятий». Фёдоров  А.А.,Каменева В.В.
  2. «Электрическая часть станций и подстанций» Васильев А.А,  Крючков И.П., Наяшкова Е.Ф.
  3. «Указания по  проектированию  компенсации  реактивной  мощности  в  электрических сетях промышленных предприятий» Железко Ю.С.
  4. «Автоматические устройства по компенсации  реактивной  мощности  в электросетях предприятий» Красник В.В.






ran

Абсолютно предательская по отношению к энергетике статья!  Да Вы  должны радоваться низкому коэффициенту мощности!

Вверх