_26. Ковальчук, Смирнов. История развития электроники

Автор Роман Ковальчук, Суббота, апреля 02, 2016, 18:10:31

« предыдущая тема - следующая тема »
Вниз

Роман Ковальчук

Суббота, апреля 02, 2016, 18:10:31 Последнее редактирование: Среда, апреля 13, 2016, 04:20:05 от ran
История развития электроники
Докладчик: Ковальчук Р.К., Смирнов П.А.,  гр. 442 об3 
Научн. рук.: Карпова Т.В.




Электроника является  бурно развивающейся отраслью науки и техники. Она изучает физические принципы и практическое применение различных электроприборов. К физической электронике относят: электронные и ионные процессы в газах и проводниках. На поверхности раздела между вакуумом и газом, твердыми и жидкими телами. К технической электронике относят изучение устройства электронных приборов, а так же их применение.  Развитие радиотехники значительно повлияло на успехи электроники. Электроника и радиотехника настолько тесно связаны между собой, что в 50-е годы их объединяют и называют Радиоэлектроника. Радиоэлектроника сегодня это комплекс областей науки и техники, связанных с проблемой передачи, приема и преобразования информации при помощи электро-магнитных колебаний и волн в радио и оптическом диапазоне частот. Электронные приборы служат основными элементами радиотехнических устройств и определяют важнейшие показатели радиоаппаратуры. С другой стороны многие проблемы в радиотехнике привели к изобретению новых и совершенствованию действующих электронных приборов. Эти приборы применяются в радиосвязи, телевидении, при записи и воспроизведении звука, в радиолакации, в радионавигации, в радиотелеуправлении, радиоизмерении и других областях радиотехники. Историю развития электроники можно условно разделить на 5 этапа: конец 19-го века, первая половина 20-го века, конец 40-х, начало 50-х годов 20-го века, начало 60-х годов 20-го века и современные года.
Первый этап (конец 19-го века)

В этот период были открыты основные физические закономерности работы электронных приборов и открыты различные явления, подталкивающие  их на развитие и использование. Началом развития ламповой техники принято считать открытие русским ученым электротехником А. Н. Лодыгиным обычной лампы накаливания.
Первые лампы накаливания Лодыгина представляли собой стеклянный шарообразный сосуд, внутри которого на двух медных стержнях диаметром в 6 миллиметров был укреплен стерженек из ретортного угля (уголь, получающийся на внутренней стороне стенок реторты при сухой перегонке каменного угля, отличается значительной твердостью, хорошо проводит ток) диаметром около 2 миллиметров. Ток подавался по проводам, проходившим через оправу, которая прикрывала отверстие шарового сосуда. Первые образцы имели очень малый срок службы, всего около 40 минут. Дальнейшие усовершенствования, такие как изменение конструкции, привели к увеличению срока службы. В.Ф. Дидрихсон, один из сотрудников Лодыгина, предложил выкачивать из ламп воздух. Но с помощью простого ручного насоса не смогли обеспечить в лампе должный уровень вакуума. Также применялись различные обугливаемые органические вещества, такие как дерево, растительное волокно. В итоге усовершенствований долговечность ламп увеличилась до 700-1000 часов. Это был настоящий прорыв. На  базе ламп накаливания уже в  1883 г. американский инженер Т. А. Эдисон открыл и описал явление термоэлектронной эмиссии и прохождения электрического тока через вакуум. Термоэлектронная эмиссия - явление вырывания электронов из металла при высокой температуре. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергии) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода, растёт, и явление термоэлектронной эмиссии становится заметным.
Русский физик А. Г. Столетов в 1888 г. открыл основные законы фотоэффекта. Важнейшую роль в развитии электроники сыграло открытие русским ученым в 1895 г. А. С. Поповым возможности передачи радиоволн на расстояние. В первых опытах по радиосвязи, проведённых в физическом кабинете, а затем в саду Минного офицерского класса, прибор А. С. Попова обнаруживал излучение радиосигналов, посылаемых передатчиком, на расстоянии до 60 м. День 7 мая стал отмечаться в СССР ежегодно с 1945 года как День радио. Далее радиосвязь была установлена на расстоянии 250 м. Работая над своим изобретением, Попов вскоре добился дальности связи более 600 м. Затем на маневрах Черноморского флота в 1899 г. ученый установил радиосвязь на расстоянии свыше 20 км, а в 1901 г. дальность радиосвязи была уже 150 км. Важную роль в этом сыграла новая конструкция передатчика. Искровой промежуток был размещен в колебательном контуре, индуктивно связанном с передающей антенной и настроенном с ней в резонанс. Существенно изменились и способы регистрации сигнала. Параллельно звонку был включен телеграфный аппарат, позволивший вести автоматическую запись сигналов. В 1899 г. была обнаружена возможность приема сигналов с помощью телефона. В начале 1900 г. радиосвязь была успешно использована во время спасательных работ в Финляндском заливе. При участии А.С. Попова началось внедрение радиосвязи на флоте и в армии России.

Это открытие дало огромный импульс развития и внедрения различных электронных приборов в практику; так появился спрос на устройства для генерации, усиления и детектирования электрических сигналов.

Второй этап (вторая половина 20-го века)

Второй этап истории развития электроники охватывает первую половину 20-го века. Этот период характеризуется разработкой и совершенствованием электровакуумных приборов и систематизированным изучением их физических свойств. В 1904 г. была сделана простейшая двухэлектродная электронная лампа -- диод, нашедший широчайшее применение в радиотехнике для детектирования электрических колебаний. Спустя всего несколько лет в 1907 г. изготовлена трехэлектродная лампа -- триод, усиления электрических сигналов. В России первые образцы ламп были изготовлены в 1914--1915 гг. под руководством Н. Д. Папалекси и М. А. Бонч-Бруевича.
Но развязанная англичанами и немцами первая мировая война, препятствовала работе по созданию новых типов электронных ламп. После государственного переворота проплаченного англосаксами 1917 года несмотря на сложнейшее финансовое состояние начала создаваться отечественная радиотехническая промышленность. В 1918 г. начинает работать Нижегородская радиолаборатория под руководством М. А. Бонч-Бруевича -- первое научно-исследовательское учреждение по вопросам радио и электровакуумной техники. Уже в тяжелейшем для страны 1919 году лаборатории были изготовлены первые образцы отечественных приемно-усилительных радиоламп, а в 1921 г. разработаны первые мощные электронные лампы с водяным охлаждением. Существенный вклад в развитие электровакуумной техники и массового производства радиоламп внес коллектив построенного в 1922 г. Ленинградского электролампового завода впоследствии именуемого «Светлана».
В дальнейшем развитие электровакуумных приборов для усиления и генерирования электрических колебаний шло семи мильными шагами. Освоение радиотехникой гектометровых (X=1000-f-100 м) и декаметровых (А=100--10 м) волн потребовало разработки высокочастотных ламп. В 1924 г. были изобретены четырехэлектродные лампы (тетроды), в 1930 г. -- пятиэлектродные (пентоды), в 1935 г. -- многосеточные частотно-преобразовательные лампы (гептоды). В 30-х и начале 40-х годов наряду с усовершенствованием обычных ламп были разработаны лампы для дециметровых (А--100-н 10 см) и сантиметровых (А=10ч-1 см) волн -- магнетроны, клистроны, лампы бегущей волны.

Параллельно с разработкой электронных создавались электронно-лучевые, фотоэлектрические, ионные приборы, в создание которых существенный вклад внесли российские инженеры. К середине 30 х годов в основном сформировалась ламповая электроника. Развитие электровакуумной техники в последующие годы шло по пути снижения габаритов приборов, улучшения их параметров и характеристик, увеличения рабочей частоты, повышения надежности и долговечности.
Третий этап (конец 40-х и начало 50-х годов)

Третий период относится к концу 40-х и началу 50-х годов, характеризующихся бурным развитием дискретных полупроводниковых приборов. Развитию полупроводниковой электроники предшествовали работы в области физики твердого тела. Большие заслуги изучения физики полупроводников принадлежат школе советских физиков, длительное время возглавляемой академиком А. Ф. Иоффе. Теоретические и экспериментальные исследования электрических свойств полупроводников, выполненные советскими учеными А. Ф. Иоффе, И. В. Курчатовым, В. П.  Жузе,  В. Г. Лошкаревым и другими, позволили создать стройную теорию полупроводников и определить пути их применения.
Электронику можно определить как науку о взаимодействии электронов с электромагнитными полями и о методах создания электронных приборов и устройств (вакуумных, газозарядных, полупроводниковых), используемых для передачи, обработки и хранения информации.
Настоящую революцию в области связи вызвало создание электронной лампы, которая делает возможным усиление и регенерацию волн. Электронные лампы нашли широкое применение, главным образом, в радиоаппаратуре и ЭВМ первого поколения.
Для военных целей было необходимо создать аппараты, которые бы могли выполнять сложные расчеты траектории снарядов и ракет. Это позволило к концу войны создать первые электронные счетные машины.
[justify]Теоретические предпосылки для создания быстродействующих счетных машин сложились к 40-м гг. ХХ в. В 1940 г. американский математик Н. Винер предложил использовать в вычислительных машинах не десятичную систему исчисления, а двоичную. В этом случае любое число можно записать только с помощью двух цифр: 1 и 0. Двоичная система исчисления и бинарная логика, разработанная Д. Булем в XIX веке, основанная на принципе «да - нет» играют ключевую роль в вычислительной технике.[/justify]
Первая ЭВМ была создана в Пенсильванском университете в 1945 году под руководством Дж. Маучли. Ее назвали ЭНИАК. Первая ЭВМ была очень громоздкой. Она состояла из 18 тысяч электронных ламп, 1500 реле и занимала зал длиной 30 метров. За одну секунду этот гигант мог складывать или вычитать пять тысяч чисел. Но машина часто останавливалась из-за того, что перегорали лампы, выходили из строя реле, много времени тратилось на подготовительные работы.
В СССР разработка первой отечественной ЭВМ с запоминаемой программой началась в 1947 г. в Киеве под руководством академика С.Я. Лебедева (1902 - 1974). Серийное производство ЭВМ началось практически одновре­менно в СССР и США в 1951 - 1952 гг. Парк ЭВМ увеличивался очень быстрыми темпами. Если в 1952 - 1953 гг. их было несколько десятков, то в 1965 г. во всем мире использовалось уже около 40 тыс. ЭВМ, а в 1970 г. - свыше 100 тыс. единиц.
В 1946 г. американский математик и физик Джон фон Нейман выдвинул и обосновал принципы создания новых ЭВМ. В них предполагался переход на двоичную систему исчисления, а также ввод и хранение программы в памяти ЭВМ аналогично данным. Прогресс вычислительной техники в 40 - 50-е гг. ХХ в. был обусловлен появлением ряда работ по численному анализу и созданием Н. Винером общей теории информации и связи, нашедшей применение в самых различных областях - от физики до биологии и языкознания.
Начало кремниевого века В 1947 году, положили в недрах лабораторий телефонной компании Bell где «родился» первый в в текущем цикле транзистор - полупроводниковый усилительный элемент. Событие ознаменовало собой переход электроники из громоздких вакуумных труб на более компактные и экономичные полупроводники. Начался новый виток цивилизации, получивший название «кремниевый век». Предполагается, что как раз знания от полупроводников смогли расшифровать от предыдущего цикла развития цивилизации на Земле
Первые промышленные образцы полупроводниковых приборов -- транзисторов, способных усиливать и генерировать электрические колебания, были предложены в 1948 г. С появлением транзисторов начинается период покорения электроники полупроводниками. Способность транзисторов работать при низких напряжениях и токах позволила уменьшить размеры всех элементов в схемах, открыла возможность миниатюризации радиоэлектронной аппаратуры. Одновременно с разработкой новых типов приборов велись работы по совершенствованию технологических методов их изготовления.

В первой половине 50-х годов был разработан метод диффузии легирующих примесей в полупроводниковые материалы, а в начале 60-х годов -- планарная и эпитаксиальная технология, на многие годы определившие прогресс в производстве полупроводниковых структур. 50-е годы знаменуются открытиями в области физики твердого тела и переходом к квантовой электронике, приведшей к развитию лазерной техники. Большой вклад в развитие этой отрасли науки и техники внесли советские ученые Н. Г. Басов и А. М. Прохоров, удостоенные Ленинской (в 1959 г.) и Нобелевской (в 1964 г.) премий.
Четвертый этап (начало 60-х годов 20-го века)

История развития электроники. Пятым этапом можно назвать полупроводники в процессорах. Или закат эпохи кремния. В передовых областях современной электроники, как разработка и производство процессоров, где размер и скорость полупроводниковых элементов стали играть решающую роль, развитие технологий использования кремния практически подошло к своему физическому пределу. В последние годы улучшение производительности интегральных схем, достигающееся путем наращивания рабочей тактовой частоты и увеличения количества транзисторов.
С увеличением скорости переключения транзисторов, их тепловыделение усиливается по экспоненте. Это остановило в 2005 году максимальную тактовую частоту процессоров где-то в районе 3 ГГц и с тех пор увеличивается лишь «многоядерность», что собственно по сути является топтанием на месте. Небольшие подвижки есть лиши в количественной интеграции полупроводниковых элементов в одном чипе путем уменьшения их физических размеров - переход на более тонкий технологический процесс. По состоянию на 2009-11 годы во всю использовалась технология в 32 нм при которой длина канала транзистора составляет всего 20 нм. Переход на более тонкий технологически процесс 16 нм началась лишь в 2014 году.                                                                    
Быстродействие транзисторов по мере их уменьшения растет, но уже не возможен рост тактовой частота ядра процессора, как было до 90 нм технологического процесса. Это говорит лишь о тупике развития кремниевых технологий, хотя они будут использоваться по меньшей мере еще столетие, если конечно не будет осуществлена перезагрузка седьмого цикла цивилизации в этой солнечной системе. В ближайшее десятилетие должны быть обнародованы графеновые разработки, особенно в этом продвинулись некоторые российские институты благодоря расшифровки информации от предыдущего цикла.
       

Графен - это полупроводниковый материал, повторно открытый лишь 2004 году. В нескольких лабораториях уже синтезирован транзистор на базе графена, который может работать в трех устойчивых состояниях. Для аналогичного решения в кремниевом исполнение, потребовалось бы три отдельных полупроводниковых транзистора. Это позволит в недалеком будущем создавать интегральные схемы из меньшего количества транзисторов, которые будут выполнять те же функции, что и их устаревшие кремниевые аналоги.

ran

#1
Понедельник, апреля 04, 2016, 01:40:42 Последнее редактирование: Понедельник, апреля 04, 2016, 01:42:39 от ran
В нескольких лабораториях уже синтезирован транзистор на базе графена, который может работать в трех устойчивых состояниях.
Вот эту гадость точно надо запретить, а то придется переделывать все учебные курсы, связанные с электроникой, с двоичной на троичную систему, а это полный геморрой.

Вверх